
Abstract: This study investigates ultrastructural variations in the antennae and wing scales of two butterfly 
species namely the Indian Jezebel (Delias eucharis; Lepidoptera: Pieridae) and the Common Mormon 
(Papilio polytes; Lepidoptera: Papilionidae), using scanning electron microscopy (SEM). Antennae function 
as key sensory organs, while wing scales influence coloration, thermoregulation, and aerodynamics. SEM 
analysis revealed two major antennal sensilla types in both species: sensilla trichodea and böhm bristles. D. 
eucharis displayed a more uniform distribution of sensilla trichodea with abundant scales and microtrichia, 
whereas P. polytes exhibited a higher density of sensilla and bristles, suggesting enhanced olfactory and 
tactile capacities. Wing scale morphology also differed markedly. D. eucharis showed broader, flattened, less 
patterned scales, producing bright yet uniform coloration that supports its mimicry-based defense strategy. 
In contrast, P. polytes possessed densely packed, ridged, and overlapping scales, creating iridescence likely 
linked to mate attraction and predator avoidance. Structural variations included a quasi-honeycomb pattern 
in P. polytes and a reticular lamina in D. eucharis, indicating roles in visual signaling and camouflage. These 
findings highlight interspecific diversity in sensory and structural adaptations, reflecting distinct ecological 
strategies. The study underscores SEM's value in advancing understanding of lepidopteran morphology and 
sensory biology.
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trichodea, which are specialized for olfactory 

detection and have been well-studied for their role in 

pheromone perception Verma, 2017; Yuvaraj , ( et al.

2018 Limberger, 2021; Talwar, 2021). Wing scales, on ; 

the other hand, are complex nanostructures that not 

only contribute to the striking coloration of many 

butterfly species but also serve functions related to 

light manipulation, thermoregulation, and species 

recognition through structural coloration (Ghiradella, 

1998 Vukusic , 1999; Wilts  2017; Castro-; et al. et al.,

Gerardino  Llorente-Bousquets, 2019).and

INTRODUCTION
The study of sensory structures and wing scales in 

Lepidoptera has provided valuable insights into the 

evolutionary adaptations of butterflies and moths to 

their ecological environments. In particular, the 

sensory organs, such as the antennae, are crucial for 

detecting environmental cues like odors and 

mechanical stimuli, which are essential for behaviors 

such as mate selection, foraging, and predator 

avoidance (Braby, 2000). In butterflies, antennae 

house a variety of sensilla, including sensilla 
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On the underside, forewings are similar but with 
broader black vein edges and yellow-tinged upper 
interspaces beyond the postdiscal band. Hindwings 
are bright yellow, with broader black veins and a 
postdiscal band extending from the costa to vein 2. 
Beyond it, interspaces show large vermilion-red 
lanceolate spots narrowly edged in white, with 
interspace 6 basally white (Moore, 1905).

The male  exhibits a single morph P. polytes while 
famale are polymorphic. Male is a dark-colored 
swallowtail butterfly. Its upper forewings display a 
series of white spots that gradually decrease in size 
toward the apex, while the upper hindwings bear a 
complete discal band of elongated white spots. 
Marginal red crescents may or may not be present. 
Males are typically smaller than females, though this 
is not always the case. The size of both males and all 
female forms of  can vary significantly P. polytes
depending on the climatic region (Bingham, 1907).

W structure and  and ing venation in D. eucharis P. 
polytesis are well studied (Patil and Magdum, 2017; 
Shimajiri and Otaki, 2022). In  two veins D. eucharias
are found to be missing, namely second radial R2 and 
first cubitus Cu1 from forewing while had P. polytes 
typical vein structure of papilionids (Patil and 
Magdum, 2017). Wing scales of had been D. eucharis 
studied albeit partially (Sharmila 2023) In et al., . D. 
eucharis antennae are black; the head, thorax, and 
abdomen are white with some black hairs giving a 
grey-blue sheen, and the palpi tip is black (Moore, 
1905). Morphology and chemical characteristics of 
scales of hind wing of male  had been studied P. polytes
by Thaj and Prasad (2023). While in this research 
ultrastructure of scales of heart shaped spot of 
forewing of and apical and eye spot region D. eucharis 
of male and antennae of both of these P. polytes 
butterflies are studied for the first time.

By investigating the antennal sensilla and wing scale 
structure of these species, the aim is to explore how 
these features have evolved in response to 
environmental pressures to optimize sensory 
perception and coloration strategies. SEM studies are 
useful in solar energy applications and biomaterial 
characterisation. Novel material design inspired by 
biomimicry needs deeper understanding of 
microscopic image features (Lyons 2025). and Shanks, 
Additionally, structural adaptations modulate 
butterfly-environment interactions, facilitating 
ecological specialization and contributing to their 
evolutionary success across distinct habitat strata 
(  , 2024).López et al.

MATERIALS AND METHODS
Adult male specimens of  Delias eucharis (Drury, 1773)

and ( were collected Papilio polytes Linnaeus, 1758) 

Lepidoptera exhibit a wide diversity in the design of 

their sensory and wing structures, shaped by 

evolutionary pressures and the specific ecological 

demands of their environments. For instance, studies on 

butterfly genus  have shown the importance of Patia

antennal sensilla in pheromone detection and 

courtship, underscoring the relationship between 

sensory structures and reproductive strategies (Castro-

Gerardino  Llorente-Bousquets, 2019). Similarly, and

research on the butterfly has revealed Acasia monuste 

the specialization of olfactory receptors in detecting 

species-specific pheromones, emphasizing the role of 

olfaction in mate recognition (Limberger, 2021). These 

findings suggest that the density and distribution of 

sensory structures are highly adapted to meet the 

specific ecological needs of each species.

In terms of wing scales, butterflies and moths display 

significant variability in scale morphology and 

arrangement, which impacts their coloration patterns. 

Structural coloration, which arises from the 

interaction of light with nanoscale ridges and lamellae 

within the scales, can create iridescent hues that serve 

functions like camouflage, warning signals, or mating 

displays (Ghiradella, 1998; Vukusic , 1999). For et al.

example, Morpho butterflies exhibit brilliant blue 

iridescence through diffraction and interference in 

their scales, which functions both as a visual signal 

and a mechanism for thermoregulation (Vukusic , et al.

1999). Likewise, species like utilize scale Vanessa 

nanostructures to enhance cryptic and disruptive 

coloration, aiding in predator evasion (Ghiradella, 

1998).

In this study, authors focus on the comparative 

morphology of the antennae and wing scales in Indian 

jejebel, Delias eucharis (Drury, 1773) (Lepidoptera: 

Pieridae) and Common Mormon, Papilio polytes 

Linnaeus, 1758 (Lepidoptera: Papilionidae) two 

butterfly species with distinct ecological adaptations. 

Delias eucharisis renowned for its bright coloration 

and visual mimicry of toxic species, which deters 

predators through Batesian mimicry, while   P. polytes,

as part of a mimicry complex, heavily relies on both 

olfactory and visual cues for mate selection and 

predator evasion (Vane-Wright, 1980). 

In male , the upper side of the wings is D. eucharis

white, with forewing veins broadly black, widening 

into triangular tips and a narrow black costal margin. 

A broad black postdiscal band runs obliquely from the 

costa to vein 4, then parallels the termen. Hindwings 

have narrower black veins for most of their length, a 

slimmer curved postdiscal band between veins 2 and 

6, and pink interspaces beyond it due to the vermilion 

underside (Moore, 1905; Bingham, 1907).
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from the gardens of University of Lucknow, Lucknow 

(26.8467° N, 80.9462° E), (U.P.), India. The collection 

was carried out using manual capture and net 

sweeping techniques, ensuring minimal stress and 

handling to preserve the integrity of both the antennae 

and wing structures.

Following collection, the antennae were carefully 
detached using fine dissecting tools, and debris were 
removed with soft brushes to maintain structural 
fidelity. The antennae and wings were then processed 
for scanning electron microscopy (SEM) in accordance 
with established protocols (Talwar, 2021). Specimens 
were fixed in 2.5% glutaraldehyde solution to stabilize 
tissues and subsequently dehydrated through a graded 
ethanol series (30%, 50%, 70%, 90%, and 100%) to 
remove water content.

For SEM preparation, the samples were mounted on 
bronze stubs and sputter-coated with a thin layer of 
gold-palladium to enhance conductivity. The 
morphological analysis was conducted using a JEOL 
JSM-7610F scanning electron microscope (SEM). 
Micrographs of the antennae—specifically the club, 
flagellum, and scape regions—were captured, with 
particular attention to the sensilla and microtrichia 
structures. Additionally, wing scales from different 
regions were examined to document their 
microstructural characteristics, such as surface ridges 
and lamellae, to assess any morphological adaptations 
related to coloration and other functional aspects. This 
detailed examination of the antennae and wing 
structure provides insights into the species-specific 
adaptations of  and  in relation to D. eucharis P. polytes
sensory perception and visual mimicry.

RESULTS

Ultrastructure of Antennae
The antennae of exhibited a relatively Delias eucharis 
moderate density of sensilla trichodea in comparision 
to , although these structures were still Papilio polytes
present in significant numbers . The flagellum  (Fig. 1)
of  displayed distinct blunt-ended D. eucharis
microtrichia with longitudinal grooves, closely 
associated with the sensilla . The antennae of  (Fig. 2)
Papilio polytes were densely covered in scales on the 
scape and pedicel, with the flagellum lacking scales 
but featuring an abundance of sensilla trichodea and 
microtrichia. Two types of sensilla trichodea, 
designated as type I and type II, were identified based 
on size and distribution. Type I sensilla were primarily 
concentrated in the club region of the flagellum  Böhm .
bristles, a mechanoreceptive structure, were clustered 
on the scape . (Fig. 3-6)

Ultrastructure of Wings
The wing scales of  demonstrated a Delias eucharis

quasi-periodic arrangement, characterized by 

Fig. 1: Ultrastructure of Flagellum region of the antenna of 
Delias eucharis on lower resolution; ST: Sensella trichodea.

Fig. 2: Ultrastructure of Flagellum region of the antenna of 
Delias eucharis on higher resolution; MT: microtrichia, Sc: 
scale.

Fig. 3: Ultrastructure of the Antennal club region of the 
antenna of Papilio polytes; ST (I): Sensilla trichodea  (Type 
I), MT: Microtrichia.

intricate microstructures consisting of longitudinal 

pillars interconnected by cross-ribs. The scales on the 

wings of  were categorized based on their D. eucharis

apical termini, including bipartite, tripartite, 

tetrapartite, and multipartite forms . (Fig. 7-8)



of the wings possessed pointed apices, while those in 

the eye spot regions showed blunt termini . (Fig. 9-11)

DISCUSSION
The structural differences in the antennae and wings 

The scales of  displayed a quasi- Papilio polytes

honeycomb arrangement, with the scales themselves 

exhibiting a range of apical structures. Scales were 

categorized as bipartite, tripartite, tetrapartite, and 

multipartite. Notably, scales in the dark brown regions 
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Fig. 4: Ultrastructure of the Flagellum region of the antenna 
of Papilio polytes; ST (I): Sensilla Trichodea (Type I), ST (II): 
Sensilla Trichodea. (Type II), MT: microtrichia.

Fig. 7: Delias eucharis: wing's heart shaped pattern region; 
Ultrastructure on lower resolution.

Fig. 5: Ultrastructure of Basal scape and pedicel regions of 
the antenna of Papilio polytes; BB: Böhm bristles, Sc: Scale, 
P: Pedicel.

Fig. 8: Delias eucharis: wing's heart shaped pattern region; 
Ultrastructure on higher resolution; quasi-periodic 
structure.

Fig. 9: Papilio polytes wing's apical region; Ultrastructure 
on lower resolution.

Fig. 6: Ultrastructure of proximal part of the flagellum 
region of the antenna of Papilio polytes; MT: microtrichia.



supported a more visually oriented sensory strategy, 
with olfaction playing a secondary role in mate 
recognition and predator avoidance. 

In contrast exhibited a higher density of , P. polytes 
sensilla trichodea, especially in the club region of the 
antennae, indicating a greater reliance on olfaction. 
These sensilla were crucial for detecting chemical 
signals, such as sex pheromones, which were vital for 
reproductive success (Zheng , 2014  Li , et al. ; et al.
2018a Xu , 2021). The abundance of these ; et al.
sensilla in  was likely an adaptation to its P. polytes
involvement in mimicry complexes, where the ability 
to recognize conspecifics was essential (Palmer et al., 
2018). BÖhm bristles found at the scape of antenna of 
P. polytes resembled like those identified in various 
other species of butterflies like Papilio demoleus, 
Junonia lemonias, Danaus chrysippus Pontia and 
daplidice (Talwar, 2021); also in some moth species as 
well e.g.,  (Xu  2021). Studies Dioryctria rubella et al.,
show that these sensilla function as mechanoreceptors 
and also help in perceiving antennal movement and 
position (Li  2018b; Xu  2021).et al., et al.,

Studies of other butterflies, such as of genus , Patia

showed similarly high densities of sensilla trichodea, 

reinforcing the role of these structures in pheromone 

detection and mate recognition (Castro-Gerardino  and 

Llorente-Bousquets, 2019). Additionally, skipper 

butterflies like  and Parnara guttata Pelopsidas mathias 

demonstrated extreme specialization in their antennal 

sensilla for the pheromone detection, further 

underscoring the evolutionary significance of these 

structures in Lepidoptera (Xiangqun , 2014).et al.

The differences in wing scale architecture between 

Delias eucharis P. polytes and provided valuable 

insights into their respective adaptations for 

coloration, thermoregulation, and light manipulation. 

Delias eucharis featured a quasi-periodic arrangement 

of wing scales, characterized by intricate 

microstructural designs formed by longitudinal pillars 

connected by cross-ribs. This structural arrangement 

facilitated bright, uniform coloration, which was 

crucial for the species' Batesian mimicry strategy, 

wherein it visually mimicked toxic species like 

Danaus chrysippus to deter predators (Vane-Wright, 

1980). The blunt-ended scales of  further D. eucharis

enhanced its visual deception, reflecting its reliance 

on visual cues for predator avoidance and survival in 

predator-rich environments. The scales of heart shape 

marginal spots of D. eucharis in our study were 

different from those of white reason of wings and 

beads along the ridges were also found to be absent in 

marginal spots in-concurrent with that of white reason 

of the wing (Sharmila et al., 2023).

of  and  reflected unique Delias eucharis Papilio polytes
adaptations to their respective ecological niches, 
particularly in terms of sensory perception and wing 
scale architecture. These variations provided insights 
into their distinct lifestyles and contributed to a 
broader understanding of lepidopteran evolution by 
offering a comparative framework with other butterfly 
and moth species.

The antennae of both  and Delias eucharis Papilio 
polytes were equipped with sensilla trichodea and 
microtrichia, sensory structures that were essential for 
olfaction and mechanoreception. However, notable 
variations in their density and distribution suggested 
varied sensory capabilities.  had a Delias eucharis
relatively lower density of sensilla trichodea 
compared to , aligning with its ecological P. polytes
strategy focused more on visual mimicry rather than 
olfactory communication. The blunt-ended 
microtrichia on the flagellum of  further D. eucharis
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Fig. 10: Papilio polytes wing's  apical region; Ultrastructure 
on higher resolution: quasi-honeycomb -like structure.

Fig. 11: Papilio polytes wing's eye spot region; 
Ultrastructure on lower resolution.



CONCLUSION
The comparative morphological analysis of Delias 

eucharis Papilio polytes and  highlighted the 

evolutionary plasticity of sensory and structural 

adaptations in Lepidoptera. The observed differences 

in sensilla density, wing scale architecture, and their 

associated functional implications underscored how 

ecological pressures drove the diversification of 

morphological traits, optimizing survival and 

reproductive success in different environmental 

contexts.
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